堀井良浩*

安達俊夫***

SC 杭の杭頭接合部の引抜き力伝達構造に関する研究 (その1 構造概要と要素実験)

SC杭	引抜き力	杭基礎	
杭頭接合部	既製杭		

1. はじめに

筆者らは、引抜き力に抵抗できる既製コンクリート杭 の杭頭半剛接合法を提案している¹⁾。これは丸鋼棒と定着 板で構成される引抜き抵抗用鋼棒を杭頭に接続し、パイ ルキャップに定着するものである。PHC 杭と PRC 杭の場 合、杭頭に作用する引抜き力は、杭体内の主筋へ伝達で きる。一方、SC 杭は、無筋の鋼管コンクリート構造であ るため、杭頭に作用する引抜き力を外殻鋼管に伝達させ る必要がある。本研究では、SC 杭の杭頭部にアンカー鉄 筋を埋込み、これを用いて上部構造からの引抜き力を外 殻鋼管に伝達する構造を提案する。本報では、引抜き力 伝達構造と要素実験の概要について報告する。

2. 杭頭接合部の概要

2.1 SC 杭の引抜き力伝達構造の概要

図-1 に SC 杭の引抜き力伝達構造の概要を示す。本構造 は、杭頭外周部に配置した側板と杭体内アンカー鉄筋に よって構成される。引抜き抵抗用鋼棒に作用する引抜き 力は、接合具によって杭体内のアンカー鉄筋に伝達され、 付着力によってコンクリートに伝わる。そして、引抜き 力は、コンクリートの支圧抵抗で側板の底面に作用し、 側板から SC 杭の外殻鋼管へ伝達する構造とした。端板は SC 杭の製造上必要な仮設材であり、側板と構造的に分離 する。

2.2 引抜き抵抗用鋼棒とアンカー鉄筋の接合具

図-2 に引抜き抵抗用鋼棒とアンカー鉄筋の接合具の概 要を示す。接合具は高ナットとカプラーで構成され,高 ナットの上部にカプラーを,下部にアンカー鉄筋(上部 ネジ加工)を各々締結する構造としている。引抜き抵抗 用鋼棒にはネジ部の無いボタンヘッド付きの PC 鋼棒を用 い,カプラーで接続することで鋼棒の伸び性能を十分に 発揮する構造とした。

3. 要素実験の概要

3.1 実験目的

要素実験の目的は,接合具が引抜き抵抗用鋼棒 (PC 鋼 棒 C 種 φ 11)の引張荷重をアンカー鉄筋に構造上安全に 伝達可能であるかを確認することである。よって,同鋼 棒の短期許容耐力相当(1080N/mm²)の引張力(103kN) に対して接合具が弾性範囲に留まるか,また接合具が同 鋼棒の引張荷重(1315N/mm²)の上限値(125kN)以上の 引張耐力を有しているかを確認する。また,鋼棒の接合 具として関係技術基準(2009 年版 プレストレストコンク リート造 技術基準解説²⁾)に適合するかも確認する。

正会員

同

○青島一樹*

西尾博人**

図-1 SC 杭の引抜き力伝達構造の概要

3.2 試験体および実験ケース

試験体は引抜き抵抗用鋼棒 (ϕ 11) とアンカー鉄筋 (D25) を前述の接合具(高ナット ϕ 32) で接合した直線 状の部材である。表-1 に試験体の諸元と実験ケースを示 す。引抜き抵抗用鋼棒の材質には D 種相当($\sigma_y \ge$ 1275N/mm²以上)を使用した。これは接合具に載荷する 引張荷重を PC 鋼棒 C 種の引張荷重の上限値以上とするた めである。アンカー鉄筋の材質は SD345 であり、上部に 30mm のネジ部を有している。また高ナットは M24 のネ ジ孔を有している。実験ケースは高ナットの材質を SNR490B とする SCJ-R と、S45C とする SCJ-S の 2 ケース とし、試験体は各ケース 3 体、計 6 体を作製した。

Study on Mechanical Behavior of Pulling Resistance of SC Pile Head Joint (Part1. Outline of the Structure and Element Tests)

AOSHIMA Kazuki, HORII Yoshihiro, NISHIO Hiroto and ADACHI Toshio

3.3 加力方法と計測項目

実験は、引抜き抵抗用鋼棒とアンカー鉄筋を把持した 状態で引張荷重を載荷する方式で行った(図-3 参照)。荷 重段階と判定基準は前述の参考文献 2)に準拠した。図-4 に荷重パターンを示す。測定項目は引張荷重と試験体の 軸変形と各部ひずみ(引抜き抵抗用鋼棒とアンカー鉄筋 と高ナット)に加え、接合具の変形・損傷状況及びカプ ラーの抜け出し・回転状況とした。

3.4 実験結果

(1)荷重変形関係と最大荷重と破壊状況等

図-5 に荷重~試験体変形(接合具を含む 100mm 区間) 関係の一例を示す。SCJ-R, SCJ-S いずれのケースも,引 抜き抵抗用鋼棒の引張荷重規格値の 0.5~0.9 倍の繰返し 載荷(200 サイクル)を行っても試験体の変形は殆ど増加 せず,最大荷重は同引張荷重の上限値(125kN)を超える 137~138kN を示した。破壊状況は全て引抜き抵抗用鋼棒 の母材破断であった。

(2)各部位のひずみ

図-6 に荷重~各部ひずみ関係の一例を示す。図中, PC 鋼棒 C 種の降伏(短期許容)耐力と引張荷重(最大耐力) 範囲と各部の降伏ひずみを併記した。全ケースにおいて, 荷重が PC 鋼棒 C 種の降伏耐力(1080N/mm²)相当の 103kN に達しても,アンカー鉄筋と高ナットのひずみは 降伏ひずみ以下であり,弾性範囲内であったと考えられ る。上記引張荷重の上限値(125kN)に達すると,ケース SCJ-R(材質:SNR490B)では,高ナットが降伏してお り,最大 0.4%程度のひずみが生じたものの,引張力伝達 性能を保持していた。一方,ケース SCJ-S(材質:S45C) では高ナットのひずみは降伏ひずみ以下であった。アン カー鉄筋は,いずれのケースも全て弾性範囲内であった。 (3)接合具各部の寸法変化・外観

カプラーの長さと内径と外径,および高ナット外径の 寸法変化は±0.1mm 以下であり有意な変化は認められなか った。高ナットの長さ変化は,SCJ-S で 0.0mm であった のに対し,SCJ-R では+0.1~+0.2mm (+:伸び)を示して おり,これは前述のひずみ計測結果と対応する。カプラ ーと高ナットは,実験後に取り外しが可能で,割れ・欠 け等は認められなかった。これらより接合具には割れ・ 欠け等の有害な変形は生じなかったと考えられる。 (4)カプラーの抜け出し・回転状況

カプラーの抜け出しは-0.1~+0.1mm であり,有意な変 化は確認されず,また引抜き抵抗用鋼棒とアンカー鉄筋 の回転も認められなかった。

4. まとめ

SC 杭の杭頭接合部の引抜き力伝達構造を提案し,要素 実験によって杭頭の引抜き抵抗用鋼棒と杭体内アンカー 鉄筋の接合具の構造性能を確認した。

- * 大成建設(株) 技術センター
- ** 大成建設(株) 設計本部
- *** 日本大学理工学部 教授・工博

表-1 試験体と実験ケース

-	ケース	数	引抜き抵抗用鋼棒		カプラー*		高ナット*		アンカー鉄筋*				
			材質	径 (mm)	材質	長さ (mm)	内径 (mm)	材質	外径 (mm)	長さ (mm)	径	材質	ねじ部 長(mm)
	SCJ-R	3	3 PC鋼棒-D種 (SBPR1275/ 3 1420)	11 S	S45C	50	13	SNR490B	32	60	D25	SD345	30
	SCJ-S	3						S45C					

*)ねじの呼びはM24共通

【参考文献】

- 青島一樹、他:引抜き力を受ける既製コンクリート杭の杭頭半剛接合法に関する 研究(その1,2),日本建築学会大会学術講演梗概集(関東),pp.345-348, 2006.9
- 2) 2009 年版 プレストレストコンクリート造 技術基準解説及び設計・計算例 付録
 4, 緊張材の定着装置及び接合具の試験方法(B), pp.149-158,2009.9
- 【謝辞】本研究について,F.T.PILE 構法既製杭協会の会員各社から貴重な御助言を頂 きました。要素実験は高周波熟練㈱にて実施しました。関係各位に謝意を示します。
 - * Technology Center, Taisei Corporation
 - ** Design Division, Taisei Corporation
 - *** Prof. College of Science & Technology, Nihon Univ, Dr. Eng