SC杭の杭頭接合部の引抜き力伝達構造に関する研究

(その2 実大実験)

SC杭	引抜き力	杭基礎
杭頭接合部	既製杭	

1. はじめに

SC 杭の杭頭部にアンカー鉄筋を埋め込み,これを用い て上部構造から受ける引抜き力を外殻鋼管(以下鋼管と 略す)に伝達する構造¹⁾を考案し,構造性能を実験により 確認した。本報では実大実験の概要を報告する。

2. 実大実験の概要

2.1 実験目的

提案する引抜き力伝達構造においては引抜き抵抗用鋼 棒 φ 11 (PC 鋼棒 A 種または C 種)の破断を想定する。本 実験では、この構造が適用される SC 杭の実大試験体を用 いて、PC 鋼棒 C 種 (1080/1230)の破断荷重上限 (125kN/ 本)に相当する引抜き力が構造上安全に伝達されるか確 認することを目的とする。

2.2 試験体

試験体の諸元を表-1 に, 概要を図-1 に示す。試験体は 直径が 900mm, 肉厚が 120mm, 鋼管 (SM490A) 厚が 14mm, 長さが 400mm の SC 杭である。杭頭部には 270mm の定着長を有する 20 本のアンカー鉄筋 D25 (上部 ねじ加工, SD345) が埋設され, その上部に高ナット φ 32

(M24 孔, SNR490B) が締結されている。高ナットの上部には引抜き抵抗用鋼棒 ϕ 11 (PC 鋼棒 D 種 1275/1420) がカプラー (S45C) を用いて接合される。端板 t10 は SC 杭の製造上必要な仮設材であり,高ナットの上部に ϕ 26 孔が設けられ,側板に隅肉溶接される。鋼管の上部には リング形状の側板 (SM490A) が溶接され,側板底面の支 圧によってコンクリート ($\sigma_B=127N/mm^2$)の抜け出しに 抵抗する。試験体はこの支圧幅 (鋼管内面と側板内面の 距離)を変えた 2 体であり,S05 試験体で 6mm,S10 試験 体で 11mm とした。実際は鋼管とコンクリートの付着も 抵抗するが,本実験では支圧による引抜き力伝達性能を 把握するために鋼管内面にテフロンシートを貼付し(杭 頭から 75mm より下方),付着が生じないようにした。

2.3 実験方法と実験ケース

実験は、引抜き抵抗用鋼棒の上端部を油圧ジャッキで 上向きに引っ張る方式で行った。実験ケースを表-2 に示 す。目標最大荷重は PC 鋼棒 φ 11-C 種の破断荷重上限 (125kN/本)相当とした。まず鋼棒 1 本の繰返し載荷を 2 回、鋼棒を変えて行った後、4、10、20 本(等間隔)を同 時に引っ張る単調載荷を順次行った。主な計測項目は荷 重と杭頭鉛直変位、引抜き抵抗用鋼棒・高ナット・アン

正会員	○堀井良浩*	同 青島一樹*
同	西尾博人**	同 安達俊夫***

表-1 試験体の諸元

試験体名	SC杭	引抜き抵抗用 鋼棒	アンカー 鉄筋	側板 支圧幅
S05	直径900mm 肉厚120mm	PC鋼棒φ11-D種 1本(L=1350mm) または4,10,20本 (L=750mm)	D25 -定着長270mm	6. Omm
\$10	鋼管厚14mm			11. Omm

材質は鋼管・側板SM490A, コンクリートFc105 (σ₈=127N/mm², E=43200N/mm²), PC鋼棒D種 (1275/1420), アンカー鉄筋SD345, 高ナットSNR490B, カプラーS45C, 端板SS400

図-1 試験体の概要

表-2 実験ケース

							LN / + 125
試験体	支圧幅 (mm)	加力 ケース	加力 本数	加力 位置	最大計 画荷重 (kN)	載荷 方式	103 123
		S05-1	1	1	125	编页」	
S05 5.5		S05-2	1	2	125	禄返し	///////////▼/ ▼
	5.5	S05-3	4	1, 6, 11, 16	480		禄返し戦的
		S05-4	10	1, 3, …, 19	1200	単調	^{kN/本} ∧ ^{120~125}
		S05-5	20	1~20	2500		1/ \
S10	10.5	\$10−1 ~5	\$05-1~5と同様		\bigvee		
							単調載荷

カー鉄筋・鋼管外面・側板上面のひずみである。

Study on Mechanical Behavior of Pulling Resistance of SC Pile Head Joint (Part2. Full-Scale Tests)

HORII Yoshihiro, AOSHIMA Kazuki NISHIO Hiroto, ADACHI Toshio

3. 実大実験結果

3.1 荷重変形関係

引張荷重 P~杭頭変位δ,関係を図-2 に示す。P はロー ドセル計測値または油圧計換算値, δ,は加力する引抜き 抵抗用鋼棒芯(複数の場合は No.1 位置、図-1 参照)より 杭芯側に 20mm の位置における端板上面変位である。図 より, S05 試験体で最大 2299kN, S10-5 試験体で最大 2348kNのPを載荷しても、δ_pは各々0.53, 0.54mm(残 留変位は0.09mm)以下と小さいことが分かる。

3.2 引抜き抵抗用鋼棒・高ナット・アンカー鉄筋の軸力

ひずみ計測結果から求めた引抜き抵抗用鋼棒の最大軸 力は 106~126kN(各ケース平均値の 0.93~1.06 倍)と概 ね均等であった。引抜き抵抗用鋼棒と高ナットとアンカ ー鉄筋の深さ方向の最大荷重時軸力分布の一例(ケース S05-5,S10-5)を図-3 に示す。高ナットの軸力は要素実験¹⁾ で得られた荷重とひずみの関係を用いて求めた。図より, 深いほど軸力が減少しており、付着によって引抜き力が コンクリートに伝達されたことが分かる。本実験におい てアンカー鉄筋の上部~中央部の付着応力は 66~ 76N/mm²と大きく、十分な付着が発揮されている。鋼棒 の引抜き力は仮設材の端板にも一部伝わる可能性がある が、高ナットの上部における付着を考慮(短期許容付着 力 8kN, $\tau_{as}=2.7$ N/mm² 相当²⁾) すると, 高ナットには大 きい箇所で PC 鋼棒 C 種の破断荷重上限の 0.94 倍 (117kN)が作用したと考えられる。

3.3 鋼管·側板応力

図-4 に、ひずみ計測結果から求めた最大荷重時の深さ 方向の鋼管外面応力分布の一例(ケース S10-5)を示す。 杭頭付近で圧縮応力が生じるが、深くなると引張応力が 増加し、引張荷重を鋼管断面積で除して求めた平均引張 応力(60N/mm²)に漸近することが分かる。コンクリート に伝達された引抜き力が側板底面の支圧として作用した 結果,鋼管上部に引張・曲げ合力が作用し,深くなるに つれてコンクリートの拘束を受けて曲げモーメントが減 少したと考えられる。この応力分布より推定した鋼管上 端部内面の縁応力は 205N/mm²と, 短期許容応力度の 0.63 倍であった。これは高ナットに伝わる引抜き力が全て側 板に作用すると考え、鋼管と側板を各々柱と片持ち梁に 置換して得られる計算値の 0.70 倍に相当する。実験結果 の方が小さいのは計算において側板のねじり剛性を考慮 してないこと等によると考えられる。また側板上面の最 大主応力は 97N/mm²以下,最大せん断応力は 53N/mm²以 下とともに短期許容応力度の0.3倍以下と小さかった。

3.4 側板の支圧幅

**

S05 試験体と S10 試験体の違いは側板の支圧幅である。 高ナットに伝わる引抜き力の全てが側板底面の支圧とし て作用すると考えて得られる平均支圧応力はケース S05-5

(129N/mm²) の方が S10-5 (75N/mm²) より大きいが,本 実験では $P \sim \delta_n$ 関係等への影響は認められなかった。鋼 管上端部内面の縁応力はケース S05-5 (192N/mm²)の方 が S10-5 (205N/mm²) より若干小さい程度であった。

4. まとめ

提案する SC 杭の引抜き力伝達構造について実大実験を 行った結果,引抜き抵抗用鋼棒 φ 11 (C種)の破断荷重に 達するまで有害な抜け出しおよび損傷は認められず、十 分な構造安全性を有することが確認された。

参考文献

- 青島, 堀井, 西尾, 安達: SC杭の杭頭接合部の引抜き力伝達構造に関 1) する研究(その1),日本建築学会大会(近畿)2014 投稿中
- 建築物の構造関係技術基準解説書編集委員会:2007 年版建築物の構造関 2) 係技術基準解説書, pp.504-505, 2007.8
- Technology Center, Taisei Corporation
- ** Design Division, Taisei Corporation

大成建設(株)設計本部 *** 日本大学理工学部 教授·工博

大成建設(株)技術センター

*** Prof. College of Science & Technology, Nihon Univ, Dr. Eng

*